Hybrid Encryption I(RSA和AES算法混合加密方案破解)

Hybrid Encryption I

https://www.mysterytwisterc3.org/en/challenges/level-ii/hybrid-encryption-i

Hybrid Encryption
A drawbimport gmpy2 c_p = 0xc0eacf32dc0492464d9616fefc3d01f56589a137781bf6cf56784dea1c44ef52d61b1025655f370eb78646716f93e0a5 n = 0x9c5f36caf9adc60b4447897c639f1564ed0709251147276de030db395555c8afed912a198b334bd230198173128298126e958e38cac653e061035e300505eed1 e = 0x3 i=0 while 1: # c_p+i*n开三次根,直到返回找到一个整数根 temp =gmpy2.iroot(c_p+i*n, e) # 返回结果包括开根的结果和是否为整数,(mpz(309658584779820310739729975902632468029), True) if(temp[1]==1): print(temp[0]) break i=i+1

运行结果:
Hybrid Encryption I(RSA和AES算法混合加密方案破解)

得到的用于AES算法中的会话密钥是309658584779820310739729975902632468029。
AES密钥的16进制形式就是0xe8f612f7fb5b6a#include <stdint.h> #include <stdio.h> #include <string.h> typedef struct{ uint32_t eK[44], dK[44]; // encKey, decKey int Nr; // 10 rounds }AesKey; #define BLOCKSIZE 16 //AES-128分组长度为16字节 // uint8_t y[4] -> uint32_t x #define LOAD32H(x, y) do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | ((uint32_t)((y)[2] & 0xff)<<8) | ((uint32_t)((y)[3] & 0xff));} while(0) // uint32_t x -> uint8_t y[4] #define STORE32H(x, y) do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff); (y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0) // 从uint32_t x中提取从低位开始的第n个字节 #define BYTE(x, n) (((x) >> (8 * (n))) & 0xff) /* used for keyExpansion */ // 字节替换然后循环左移1位 #define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ ((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff)) // uint32_t x循环左移n位 #define ROF32(x, n) (((x) << (n)) | ((x) >> (32-(n)))) // uint32_t x循环右移n位 #define ROR32(x, n) (((x) >> (n)) | ((x) << (32-(n)))) /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ // AES-128轮常量 static const uint32_t rcon[10] = { 0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL, 0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL }; // S盒 unsigned char S[256] = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; //逆S盒 unsigned char inv_S[256] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; /* copy in[16] to state[4][4] */ int loadStateArray(uint8_t (*state)[4], const uint8_t *in) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { state[j][i] = *in++; } } return 0; } /* copy state[4][4] to out[16] */ int storeStateArray(uint8_t (*state)[4], uint8_t *out) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { *out++ = state[j][i]; } } return 0; } //秘钥扩展 int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey) { if (NULL == key || NULL == aesKey){ printf("keyExpansion param is NULLn"); return -1; } if (keyLen != 16){ printf("keyExpansion keyLen = %d, Not support.n", keyLen); return -1; } uint32_t *w = aesKey->eK; //加密秘钥 uint32_t *v = aesKey->dK; //解密秘钥 /* keyLen is 16 Bytes, generate uint32_t W[44]. */ /* W[0-3] */ for (int i = 0; i < 4; ++i) { LOAD32H(w[i], key + 4*i); } /* W[4-43] */ for (int i = 0; i < 10; ++i) { w[4] = w[0] ^ MIX(w[3]) ^ rcon[i]; w[5] = w[1] ^ w[4]; w[6] = w[2] ^ w[5]; w[7] = w[3] ^ w[6]; w += 4; } w = aesKey->eK+44 - 4; //解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥 //即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3] for (int j = 0; j < 11; ++j) { for (int i = 0; i < 4; ++i) { v[i] = w[i]; } w -= 4; v += 4; } return 0; } // 轮秘钥加 int addRoundKey(uint8_t (*state)[4], const uint32_t *key) { uint8_t k[4][4]; /* i: row, j: col */ for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { k[i][j] = (uint8_t) BYTE(key[j], 3 - i); /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */ state[i][j] ^= k[i][j]; } } return 0; } //字节替换 int subBytes(uint8_t (*state)[4]) { /* i: row, j: col */ for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标 } } return 0; } //逆字节替换 int invSubBytes(uint8_t (*state)[4]) { /* i: row, j: col */ for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { state[i][j] = inv_S[state[i][j]]; } } return 0; } //行移位 int shiftRows(uint8_t (*state)[4]) { uint32_t block[4] = {0}; /* i: row */ for (int i = 0; i < 4; ++i) { //便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t LOAD32H(block[i], state[i]); block[i] = ROF32(block[i], 8*i); STORE32H(block[i], state[i]); } return 0; } //逆行移位 int invShiftRows(uint8_t (*state)[4]) { uint32_t block[4] = {0}; /* i: row */ for (int i = 0; i < 4; ++i) { LOAD32H(block[i], state[i]); block[i] = ROR32(block[i], 8*i); STORE32H(block[i], state[i]); } return 0; } /* Galois Field (256) Multiplication of two Bytes */ // 两字节的伽罗华域乘法运算 uint8_t GMul(uint8_t u, uint8_t v) { uint8_t p = 0; for (int i = 0; i < 8; ++i) { if (u & 0x01) { // p ^= v; } int flag = (v & 0x80); v <<= 1; if (flag) { v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */ } u >>= 1; } return p; } // 列混合 int mixColumns(uint8_t (*state)[4]) { uint8_t tmp[4][4]; uint8_t M[4][4] = {{0x02, 0x03, 0x01, 0x01}, {0x01, 0x02, 0x03, 0x01}, {0x01, 0x01, 0x02, 0x03}, {0x03, 0x01, 0x01, 0x02}}; /* copy state[4][4] to tmp[4][4] */ for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j){ tmp[i][j] = state[i][j]; } } for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { //伽罗华域加法和乘法 state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j]) ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]); } } return 0; } // 逆列混合 int invMixColumns(uint8_t (*state)[4]) { uint8_t tmp[4][4]; uint8_t M[4][4] = {{0x0E, 0x0B, 0x0D, 0x09}, {0x09, 0x0E, 0x0B, 0x0D}, {0x0D, 0x09, 0x0E, 0x0B}, {0x0B, 0x0D, 0x09, 0x0E}}; //使用列混合矩阵的逆矩阵 /* copy state[4][4] to tmp[4][4] */ for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j){ tmp[i][j] = state[i][j]; } } for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j]) ^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]); } } return 0; } // AES128解密, 参数要求同加密 int aesDecrypt(const uint8_t *key, uint32_t keyLen, const uint8_t *ct, uint8_t *pt, uint32_t len) { AesKey aesKey; uint8_t *pos = pt; const uint32_t *rk = aesKey.dK; //解密秘钥指针 uint8_t out[BLOCKSIZE] = {0}; uint8_t actualKey[16] = {0}; uint8_t state[4][4] = {0}; if (NULL == key || NULL == ct || NULL == pt){ printf("param err.n"); return -1; } if (keyLen > 16){ printf("keyLen must be 16.n"); return -1; } if (len % BLOCKSIZE){ printf("inLen is invalid.n"); return -1; } memcpy(actualKey, key, keyLen); //秘钥扩展,同加密 keyExpansion(actualKey, 16, &aesKey); for (int i = 0; i < len; i += BLOCKSIZE) { // 把16字节的密文转换为4x4状态矩阵来进行处理 loadStateArray(state, ct); // 轮秘钥加,同加密 addRoundKey(state, rk); for (int j = 1; j < 10; ++j) { rk += 4; invShiftRows(state); // 逆行移位 invSubBytes(state); // 逆字节替换,这两步顺序可以颠倒 addRoundKey(state, rk); // 轮秘钥加,同加密 invMixColumns(state); // 逆列混合 } // 逆字节替换 invSubBytes(state); // 逆行移位 invShiftRows(state); // 此处没有逆列混合 addRoundKey(state, rk+4); // 轮秘钥加,同加密 // 保存明文数据 storeStateArray(state, pos); // 输出数据内存指针移位分组长度 pos += BLOCKSIZE; // 输入数据内存指针移位分组长度 ct += BLOCKSIZE; // 恢复rk指针到秘钥初始位置 rk = aesKey.dK; } return 0; } int main() { //密钥 const uint8_t key[16] = {0xe8,0xf6,0x12,0xf7,0xfb,0x5b,0x6a,0xc2,0xa3,0xe9,0x9a,0x52,0xba,0x6c,0xde,0x3d}; //密文 uint8_t pt[16]={0xfd,0x0b,0x93 ,0x4c ,0x23 ,0x28 ,0x89 ,0x75 ,0x64 ,0x8c ,0xd1 ,0xd0 ,0x3e ,0xd3 ,0xc5,0xe2}; //解密后的明文 uint8_t plain[16] = {0}; // 外部申请输出数据内存,用于解密后的数据 ///解密 aesDecrypt(key, 16, pt, plain, 16); // 解密 printf("解密后的明文:"); for(int i = 0 ; i <16 ;i++){ printf("%c",plain[i]); } return 0; }

运行结果:
Hybrid Encryption I(RSA和AES算法混合加密方案破解)

AES解密得到的明文是Diffie Rocks !!!
在网址输入验证正确:
Hybrid Encryption I(RSA和AES算法混合加密方案破解)

版权声明:玥玥 发表于 2021-03-14 1:32:54。
转载请注明:Hybrid Encryption I(RSA和AES算法混合加密方案破解) | 女黑客导航