leach协议性能

1.问题描述:

        无线传感器网络中LEACH协议工作原理,然后通过NS2将LEACH和LEACH-C,MTE在设置的仿真环境中做了仿真对比.仿真结果表明,MTE比LEACH和LEACH-C有更长的网络生存时间,当SINK节点位置在感知区域内时LEACH性能优于LEACH-C.当SINK节点位置远离感知区域时LEACH-C性能比LEACH更好.

2.部分程序:

 

clear
%1.初始参数设定模块
%.传感器节点区域界限(单位 M)
xm=100;
ym=100;
%(1)汇聚节坐标给定
sink.x=0.5*xm;
sink.y=0.5*ym;
%区域内传器节数
n=100
%簇头优化比例(当选簇头的概率)
P=0.1;
%能量模型(单位 焦)
%初始化能量模型
Eo=0.5;
%Eelec=Etx=Erx
ETX=50*0.000000001;
ERX=50*0.000000001;
%Transmit Amplifier types
Efs=10*0.000000000001;
Emp=0.0013*0.000000000001;
%Data Aggregation Energy
EDA=5*0.000000001;
%高能量节点超出一节点能量的百分比
a=1;
%最大循环次数
rmax=5000
%算出参数 do
do=sqrt(Efs/Emp);
Et=0;
%2.无线传感器网络模型产生模块
%构建无线传感器网络,在区域内均匀投放100个节点,并画出图形
for i=1:1:n
    S3(i).xd=rand(1,1)*xm;
    S4(i).xd=S3(i).xd;
    XR4(i)=S4(i).xd;
    XR3(i)=S3(i).xd;
    S3(i).yd=rand(1,1)*ym;
    S4(i).yd=S3(i).yd;
    YR4(i)=S4(i).yd;
    S4(i).G=0;
    YR3(i)=S3(i).yd;
    S3(i).G=0;
    S3(i).E=Eo*(1+rand*a);
    S4(i).E=S3(i).E;
    E3(i)= S3(i).E;
    E4(i)= S4(i).E;
    Et=Et+E3(i);
    %initially there are no cluster heads only nodes
    S3(i).type='N';
    S4(i).type='N';
end
d1=0.765*xm/2;
K=sqrt(0.5*n*do/pi)*xm/d1^2;
d2=xm/sqrt(2*pi*K);
Er=4000*(2*n*ETX+n*EDA+K*Emp*d1^4+n*Efs*d2^2);
S3(n+1).xd=sink.x;
S3(n+1).yd=sink.y;
S4(n+1).xd=sink.x;
S4(n+1).yd=sink.y;
%3.网络运行模块
%簇头节点数
countCHs3=0;
cluster3=1;%此定义的目的仅仅是给定一个1开始的下标参数,真正的簇头数应该还减去1
flag_first_dead3=0;
flag_teenth_dead3=0;
flag_all_dead3=0;
%死亡节点数
dead3=0;
first_dead3=0;
teenth_dead3=0;
all_dead3=0;
%活动节点数
allive3=n;
%counter for bit transmitted to Bases Station and to Cluster Heads
pACKETS_TO_BS3(r+1)=packets_TO_BS3;
            S3(i).type='C';
            S3(i).G=round(1/p(i))-1;
            C3(cluster3).xd=S3(i).xd;
            C3(cluster3).yd=S3(i).yd;
            distance=sqrt( (S3(i).xd-(S3(n+1).xd) )^2 + (S3(i).yd-(S3(n+1).yd) )^2 );
            C3(cluster3).distance=distance;
            C3(cluster3).id=i;
            X3(cluster3)=S3(i).xd;
            Y3(cluster3)=S3(i).yd;
            cluster3=cluster3+1;
            %计算簇头发送4000bit数据到基站的能量消耗(这里应是所有节点包括簇头每一轮发送4000bit数据)
            distance;
            if (distance>do)
                S3(i).E=S3(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S3(i).E=S3(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
    end
    % S3(i).G=S3(i).G-1;  
   
  end 
 end
end
STATISTICS.COUNTCHS3(r+1)=countCHs3;
%(5)簇内成员选择簇头模块(即簇的形成模块)
%簇内成员对簇头的选择(即簇的形成)算法
for c=1:1:cluster3-1
    x3(c)=0;
end
y3=0;
z3=0;
for i=1:1:n
   if ( S3(i).type=='N' && S3(i).E>0 )
     if(cluster3-1>=1)
       min_dis=Inf;
       min_dis_cluster=0;
       for c=1:1:cluster3-1
           temp=min(min_dis,sqrt( (S3(i).xd-C3(c).xd)^2 + (S3(i).yd-C3(c).yd)^2 ) );
           if ( temp<min_dis )
               min_dis=temp;
               min_dis_cluster=c;
               x3(c)=x3(c)+1;
           end
       end
       %簇内节点(发送4000bit数据)能量消耗
 
            min_dis;
            if (min_dis>do)
                S3(i).E=S3(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis)); 
            end
            if (min_dis<=do)
                S3(i).E=S3(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis)); 
            end
        %簇头(接受和融合这一簇内节点4000bit数据)的能量消耗
            S3(C3(min_dis_cluster).id).E = S3(C3(min_dis_cluster).id).E- ( (ERX + EDA)*4000 ); 
            packets_TO_CH3=packets_TO_CH3+1;

            
      
        S3(i).min_dis=min_dis;
        S3(i).min_dis_cluster=min_dis_cluster;
   else
            y3=y3+1;
            min_dis=sqrt( (S3(i).xd-S3(n+1).xd)^2 + (S3(i).yd-S3(n+1).yd)^2 );
            if (min_dis>do)
                S3(i).E=S3(i).E- ( ETX*(4000) + Emp*4000*( min_dis * min_dis * min_dis * min_dis)); 
            end
            if (min_dis<=do)
                S3(i).E=S3(i).E- ( ETX*(4000) + Efs*4000*( min_dis * min_dis)); 
            end
            packets_TO_BS3=packets_TO_BS3+1;
   end
  end
end
if countCHs3~=0
   u3=(n-y3)/countCHs3;
 for c=1:1:cluster3-1
    z3=(x3(c)-u3)*(x3(c)-u3)+z3;
 end
 LBF3(r+1)=z3/countCHs3;
else  LBF3(r+1)=0;
end
 STATISTICS.PACKETS_TO_CH3(r+1)=packets_TO_CH3;
 STATISTICS.PACKETS_TO_BS3(r+1)=packets_TO_BS3;
end
countCHs4=0;
cluster=1;%此定义的目的仅仅是给定一个1开始的下标参数,真正的簇头数应该还减去1
flag_first_dead4=0;
flag_teenth_dead4=0;
flag_all_dead4=0;
%死亡节点数
dead4=0;
first_dead4=0;
teenth_dead4=0;
all_dead4=0;
%活动节点数
allive4=n;
%counter for bit transmitted to Bases Station and to Cluster Heads
packets_TO_BS4=0;
packets_TO_CH4=0;
%(1)循环模式设定
for r=0:1:rmax     %该 for 循环将下面的所有程序包括在内,直到最后一 end 才结束循环
    r
  %每过一个轮转周期(本程序为10次)使各节点的S(i).G参数(该参数用于后面的簇选举,在该轮转周期内已当选过簇头的节点不能再当选)恢复为零
  if(mod(r, round(1/P) )==0)
    for i=1:1:n
        S4(i).G=0;
        S4(i).cl=0;
    end
  end
  Ea=Et*(1-r/rmax)/n;
  El4(r+1)=0;
  for i=1:100
   El4(r+1)=S4(i).E+El4(r+1);
  end
  Ec4(r+1)=Et-El4(r+1);
%(2)死亡节点检查模块
dead4=0;
for i=1:1:n
    %检查有无死亡节点
    if (S4(i).E<=0)
        dead4=dead4+1; 
        %(3)第一个死亡节点的产生时间(用轮次表示)
        %第一个节点死亡时间
        if (dead4==1)
           if(flag_first_dead4==0)
              first_dead4=r;
              flag_first_dead4=1;
           end
        end
        %10%的节点死亡时间
        if(dead4==0.1*n)
           if(flag_teenth_dead4==0)
              teenth_dead4=r;
              flag_teenth_dead4=1;
           end
        end
        if(dead4==n)
           if(flag_all_dead4==0)
              all_dead4=r;
              flag_all_dead4=1;
           end
        end
    end
    if S4(i).E>0
        S4(i).type='N';
    end
end
STATISTICS.DEAD4(r+1)=dead4;
STATISTICS.ALLIVE4(r+1)=allive4-dead4;
%(4)簇头选举模块
countCHs4=0;
cluster4=1;
for i=1:1:n
 if Ea>0
 p(i)=P*n*S4(i).E*E4(i)/(Et*Ea);
 if(S4(i).E>0)
   temp_rand=rand;     
   if ( (S4(i).G)<=0)  
       %簇头的选举,当选的簇头会把各种相关信存入下面程序所给定的变量中
        if(temp_rand<= (p(i)/(1-p(i)*mod(r,round(1/p(i))))))
            countCHs4=countCHs4+1;
            packets_TO_BS4=packets_TO_BS4+1;
            PACKETS_TO_BS4(r+1)=packets_TO_BS4;
            S4(i).type='C';
            S4(i).G=round(1/p(i))-1;
            C4(cluster4).xd=S4(i).xd;
            C4(cluster4).yd=S4(i).yd;
            distance=sqrt( (S4(i).xd-(S4(n+1).xd) )^2 + (S4(i).yd-(S4(n+1).yd) )^2 );
            C4(cluster4).distance=distance;
            C4(cluster4).id=i;
            X4(cluster4)=S4(i).xd;
            Y4(cluster4)=S4(i).yd;
            cluster4=cluster4+1;
           %计算簇头发送4000bit数据到基站的能量消耗(这里应是所有节点包括簇头每一轮发送4000bit数据)
            distance;
            if (distance>do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000) + Emp*4000*( distance*distance*distance*distance )); 
            end
            if (distance<=do)
                S4(i).E=S4(i).E- ( (ETX+EDA)*(4000)  + Efs*4000*( distance * distance )); 
            end
        end     
    
    end
    % S4(i).G=S4(i).G-1;  
  end 
 end
end
STATISTICS.COUNTCHS4(r+1)=countCHs4;
 

3.仿真结论:

leach协议性能

D-40

版权声明:玥玥 发表于 2021-04-21 2:10:11。
转载请注明:leach协议性能 | 女黑客导航